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ABSTRACT: In the decoupling limit of DGP, 7 describes the brane-bending degree of
freedom. It obeys second order equations of motion, yet it is governed by a higher derivative
Lagrangian. We show that, analogously to the Einstein-Hilbert action for GR, the -
Lagrangian requires Gibbons-Hawking-York type boundary terms to render the variational
principle well-posed. These terms are important if there are other boundaries present
besides the DGP brane, such as in higher dimensional cascading DGP models. We derive
the necessary boundary terms in two ways. First, we derive them directly from the brane-
localized m-Lagrangian by demanding well-posedness of the action. Second, we calculate
them directly from the bulk, taking into account the Gibbons-Hawking-York terms in
the bulk Einstein-Hilbert action. As an application, we use the new boundary terms to
derive Israel junction conditions for w across a sheet-like source. In addition, we calculate
boundary terms and junction conditions for the galileons which generalize the DGP 7-
lagrangian, showing that the boundary term for the n-th order galileon is the (n — 1)-th
order galileon.
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1 Introduction and results

The Dvali-Gabadadze-Porrati (DGP) model is a higher-dimensional brane-world model
first introduced in [1]. The defining feature of DGP is an Einstein-Hilbert term localized
on the brane, in addition to the one in the bulk. DGP has its problems (see [2] for a
sample), but we still find it interesting and worth studying due to the fact that quantum
corrections will generically induce a DGP term in any brane-world setup, and thus the
problems can be used to place constraints on possible UV completions [3, 4], or may be
remedied by going to higher codimension or cascading DGP setups [5]. We consider the
case where there is an (n — 1)-dimensional brane in an n-dimensional bulk,!

M2 My ~1
5= /d”X\/—GR(G)Jr : /d” o/ =gR(g) + Sar. (1.1)
% By

One is often interested in integrating out the bulk modes to find an effective (n — 1)-
dimensional description of the system [6]. It is found that in a certain limit, called the
decoupling limit, the effective boundary theory reduces to linear gravity coupled to the mat-
ter stress tensor, along with the following non-linear action for a scalar degree of freedom,?

1
S = / "z —3(07) — ~A(07)20r + T, (1.2)

B, 2
'Here X“, with A,B,---=0,1,2,3,...,n — 1 are the n-dimensional bulk coordinates, Gap(X) is the
n-dimensional metric, and M, is the n-dimensional Planck mass. z*, with y,v,...=0,1,2,3,...,n—2 are

the (n — 1)-dimensional brane coordinates, g, (x) is the (n — 1)-dimensional brane metric given by inducing
the n-dimensional metric G ap onto the brane, and M,,_1 is the (n — 1)-dimensional Planck mass. Sas is the
matter action, which we imagine to be localized to the brane. We call the n — 1 coordinate y, and choose
coordinates such that the DGP brane lies at y = 0. We denote the bulk volume V, and the DGP brane B,.

2All the derivatives here are (n — 1)-dimensional. The metric signature convention is mostly plus. The
factor of 3 normalizing the scalar kinetic term is conventional.



where T is the trace of the matter stress tensor scaled by appropriate constants, and A is a
dimensionful coupling constant, which reflects the strong coupling scale of the theory (the
precise value of A does not concern us, but it can be found in terms of M, and M, _1).
This is known as the 7 Lagrangian,® first obtained in [6], and further studied in [8]. The
field 7 is a certain configuration of bulk fields, namely,

N =90, N,=0,, hy =0, (1.3)

where Tl(z,y) = e ¥2n(z), A = /—0=D0. Here N(x,y), Nu(z,y) and hy,(z,y) are the
deviations of the n-dimensional lapse, shift (both with respect to the y direction) and brane
metric about a flat background. The cubic part of the 7 Lagrangian comes from expanding
the bulk Einstein-Hilbert term to third order in the lapse and shift and evaluating on the
configuration (1.3).

We are interested in the situation in which the DGP brane itself has some kind of n —2
dimensional boundary to it, for whatever reason. For example, suppose the bulk has, in
addition to the DGP brane, an (n — 1)-dimensional boundary located at z = 2, where z is
one of the spatial coordinates transverse to y. Calling the DGP brane at y = 0 by B, and
the boundary at z = zy by B, the intersection B, N B, is a (n — 2)-dimensional boundary
for the DGP brane. z' will be the (n — 2) coordinates along the intersection. See figure 1
for the setup.

There are any number of reasons such a boundary may be present physically. Examples
include intersecting brane models in string theory, and cascading DGP [5]. However, even
if a boundary such as B, is not present physically, we are still interested in imagining it off
at infinity, representing spatial boundary conditions for the fields. These considerations are
necessary both for the purposes of rendering the action well-posed, and for making sense of
global concepts such as energy and entropy (see [9] for discussions of these and other points).

The field equations stemming from (1.2) are second order, so there is only a single
degree of freedom. Accordingly, we many only set one piece of boundary data. Varying
the action (1.2), we must keep track of boundary contributions at z = zy. We will employ
a variational principle where we fix the value of © on the boundary, which implies that the
variation o7 (and hence its tangential derivatives) equal zero on the boundary. We may
not set the normal derivatives 0,07 equal to zero on the boundary [9].

As it stands, there is a leftover boundary contribution to the variation of (1.2), which
contains d,6m and may not be set to zero,

55, = —A / e L(9,7)%.0m. (1.4)
B,NB. 2

This variation must be cancelled if the action is to be truly stationary and the variational
principle well-posed. As we’ll see, this can only be achieved if the following boundary term
is added to the m-action,

Sp = )\/ d" 2z }(8277)3 + = (0;m)%0,m. (1.5)
B,NB- 6 2

3In addition, this Lagrangian (1.2) is invariant, up to a total derivative, under the internal galilean
symmetry m — 7+ c+b,at, where ¢ and b, are constants. It is an example of a larger class of Lagrangians
with this symmetry, dubbed galileons [7].



Corner term

Gibbons-Hawking-York term

Figure 1. Setup.

The variation of (1.5) exactly cancels (1.4). The boundary term (1.5) is analogous to the
Gibbons-Hawking-York boundary term that must be added to the Einstein-Hilbert action
to render it well-posed [9-11]. It arises for a similar reason; the Lagrangian is higher order,
leading to more derivatives on boundary variations, and yet the field equations are lower
order, leading to fewer degrees of freedom for setting boundary variations to zero.

The bulk DGP action is simply the Einstein-Hilbert action, and is well-posed if the
appropriate Gibbons-Hawking-York terms are added to all boundaries. As such, we should
expect to be able to derive a well-posed w-Lagrangian in the decoupling limit. We will
derive the appropriate boundary terms (1.5) from the bulk.

To make the bulk Einstein-Hilbert action well-posed, Gibbons-Hawking-York terms
must be present on B, and B, and a corner term must be present on the (n—2)-dimensional
juncture B, N B, [12]. Upon adding these terms, we will re-derive the m-action by expand-
ing the bulk action to cubic order in the lapse and shift, as in [6], but keeping careful
track of all boundary contributions. We will find that the boundary terms (1.5) come out
automatically, as expected from well-posedness of the bulk action.

Finally, we will use the new boundary term (1.5) to derive, directly from the action
principle, junction conditions for the 7 field across a sheet-like source of the form T'(z¢, 2) =
T(x")d(2), i.e. the analog of the Israel junction conditions of GR. We will find that the



normal derivative, d,7, of the 7 field should change across the source as

N2 A 0,7 = —T(2). (1.6)

2 Derivation of the boundary term from well-posedness of the w-action

Consider the cubic part of the m-Lagrangian (1.2) as an (n — 1)-dimensional theory on By,
forgetting for the moment that it comes from DGP,

1
Sr = / d" "tz (0r)*On. (2.1)
2 B,
(We will be working only with the cubic term so we drop the overall constant, A.) Varying

the action, we find

05y = / "tz [(Dﬂ')z - (3M8VW)2] om
B

Y

_ / A2z [(0,7) O — OHmd,0,m|dm + l(auﬂ)zaz&r7 (2.2)
ByNB- 2

where we have kept terms on the boundary B, N B..

The field equations are second order despite the fact that the Lagrangian has second
derivatives, which cannot be removed with an integration by parts. This leads to many nice
properties [8]. The fact that the field equations are second order means that there is only
a single propagating scalar degree of freedom (as opposed to higher order equations, which
may describe more than one degree of freedom). The number of boundary conditions that
may be set is equal to the number of degrees of freedom, so we may only set one boundary
condition for 7 [9]. We will choose to fix the value of m on the boundary. This implies
0w = 0 on the boundary, as well as 0;d7 = 0 on the boundary. Given this, we may not
set 0,0m = 0 on the boundary, as this would be fixing an additional degree of freedom.
Because of the contribution —%(9,7)20.0m to the boundary variation (2.2), the action is
not stationary. The action .S is therefore not well-posed when 7 is fixed on the boundary.

We wish to find a boundary term, Sp, which when added to Sy, yields an action
S! = Sr+Sp, which is well posed. The variation of Sp must therefore cancel the unwanted

8Sp = / d" 2z
ByNB.

Consider the terms that are potentially present in Sp. Each must have three factors of 7,

term containing 0,0,

(8,m)20,0m. (2.3)

[N

and three derivatives, an even number of which must be 9;’s (because they must contract).
Thus there can be either one 9, and two 0;’s or three 0,’s. There cannot be more than
one z derivative acting on each 7 (because then the variation would contain 92§ or 826,
which cannot be set to zero). This leaves three possible terms, up to a total tangential
derivative, which we write with arbitrary coefficients a, b and c,

Sp = / d" %z a (9,7)% + b (97)%0.7 + ¢ 70?70, 7. (2.4)
ByNB.



The variation of this yields (setting dm = 0 as per our variational principle),
§Sp = / d" %z [3a(0.7)* + b(0;m)* + cnd2m] D.0m. (2.5)
B,NB.

This gives (2.3) if and only if a = %, b= %, and ¢ = 0. Therefore the appropriate boundary
term is:

Sp = / d" 2z 1((957r)3 + l(aw)?aﬂr. (2.6)
B,NB- 6 2

Of course there is some freedom in the boundary term; the addition of any function of 7 or
0;m does not alter the variation. (2.6) is the unique boundary term involving three 7’s and
three derivatives, up to a total tangential derivative and terms involving no normal deriva-
tives. In the next section, we will derive this boundary term Sp directly from the bulk.

3 Derivation of the boundary term from the bulk

We first set up some notation. See the appendices of [9] for further information and
conventions. The normal vector to By is denoted n?, and it points in the positive y
direction, into the bulk.* The extrinsic curvature of B, is denoted K, and the induced
metric is g,,. The normal vector to B, is denoted 24 | and it points in the positive z
direction, out of the bulk. Indices on B, are a,b, ..., and the induced metric is denoted vp.
The extrinsic curvature of B, is denoted Ky,. The metric on B, N B, is denoted o;;. The
extrinsic curvature on B, N B, as embedded in B, is denoted k;;. As we’ll see, we cannot

An, =0, so the boundaries do not necessarily intersect orthogonally.

require z

To derive the well-posed action S, from the bulk, we must start with a bulk action,
which is well-posed. This means the appropriate Gibbons-Hawking-York terms must be
added to both the boundaries B, and B, [9-11]. The Gibbons-Hawking-York term is
simply the trace of the extrinsic curvature of the boundary. In addition, it has been
shown that a corner term must be added when there are non-orthogonal junctions between

AZA), and is localized on B, N B..

boundaries [12]. The corner term Lagrangian is arccos(n
These terms are all proportional to MQ_Q, because they are there to render the bulk
Einstein-Hilbert Lagrangian well-posed. The brane Einstein-Hilbert term must also be
accompanied by a Gibbons-Hawking-York proportional to Ms__f . This term is localized
on By, N B, and involves k, the trace of the extrinsic of By N B, as embedded in B,. The

total action is therefore,

n—2
S = M’; /d"X\/—G R(G) +Mg—2/ d" ey =y K - M;}—2/
%

B B

d"ley/—g K
Y

—M:l‘_2/ d"2av/=0 arccos(n?z4)
B,NB.

Mn—3
+ "—1/ d" ey —g R(g)+Mg_—f/ d"2xy/—0 k. (3.1)
2 Js, B,NB-

4Note that this is opposite to the conventions laid out in [9], so we will have to account for this with an
explicit minus sign.



Note that the term on B, comes with a minus sign because, opposite to convention, we
have set the normal vector n” pointing into the bulk.

Following [6], we change to ADM variables in the y direction (see the appendices of [9]
for conventions on the ADM decomposition). The n-dimensional bulk term and (n — 1)-
dimensional Gibbons-Hawking-York terms (dropping an overall factor of M?~2/2) are

A9:L/d@XwigATUL+KQ—]QWKW”+2VAWBVBW4—nAVBnBﬂ (3.2)
1%

+2/ d"lzy/—y K — 2/ d"lzy/—g K — 2/ d"2x/—0 arccos(n?z4).
B By B

yNB

The total derivative in the first line can be simplified by use of Stokes’ theorem, keeping
in mind that n?z4 # 0,

/ d"Xv -G [QVA(nBVBnA — nAVBnB)] + 2/ d" tay/— K — 2/ d"ley/—g K
% B. B,
= 2/ d" o/ = K+ za(nPVpn? — nAVBnB)]
B

—2/ d" 1z =g (K + na(nPvgnt — nAVBnB)} . (3.3)
B

Y

The second integral vanishes as nAVpgna = 0, ning = 1, and Vzn® = K. The first term
can be further reduced,

2/ d" o/ =y [IC + zA(nBVBnA — nAVBnB)]
= 2/ d" o/ =y [IC —n4nBVgza + nBVB(nAzA) — nAzAVBnB]
B

= 2/ A"t/ =y ['yabeferBzA —n4nBVgza+ nBVB(nAzA) — nAzAVBnB}
B

= 2/ d" e/ =~ [g“”eﬁerBzA + nBVB(nAzA) — nAzAVBnB] , (3.4)
B
where el‘:‘ and ej;l are bases tangent to By, and B, respectively.

Bringing back the corner term, the full action is then,
S =Sy + 5B, + Scorner; (3.5)
where,
&:A&WQNW+W—mmM,
Sp, = 2/8 d" toy/—y [g“”eﬁevazA + nBVB(nAzA) - nAzAK] ,

Secorner = —2/ d"2x/—o arccos(nAzA). (3.6)
B,NB.



So far, no approximations or expansions have been made. To derive the cubic 7 term, we
expand the action around a flat background Gap = nap, where the branes are flat and
perpendicular to each other. We expand the lapse, shift, and spatial metric accordingly,

N=14+N, NM:N/“ gpy:nuu+huu- (37)

The 7 cubic term comes from terms in the expansion which are cubic order in the devi-
ations N ]\7“, and zeroth order in h,,. As such, none of the brane terms proportional to
M)~} 3 contribute, since they only depend on huw. Thus, we must only expand the three
terms (3.6).

Once we have the third order expression, we isolate the scalar mode by plugging in
N =9,01, N,=09,II, (3.8)

where TI(z,y) = e ¥2n(z), A = v/—"=DO. The result should completely localize to B,.

Before starting, we collect some useful third order expressions,

1 - - -
K = _5(1 - N+ Ng)(aqu + &,N#),

K = —(1— N+ N%)(9,N"),

1 -~ - -
ZA <1 — 5Nf + NNZ2>3AZ,

- . 1 ~
ndz4 = —N, + NN, + 5Nf — N.N?2,

S I 1 ~ ~
V= =1+N+ 5N3 - 5NNZ?. (3.9)

Bulk piece, Sy,. Start with the terms over the bulk volume,
SV:/d”X\/—gN[R—i-KQ—KWK“”]. (3.10)
v

Because we are only keeping zeroth order in metric deviations, we have /—g =1, R = 0.
With this the bulk term is,

Sy = d”X [ (9, N")? % N, (8" N¥ +aVN~)]
d”X 0, N [ 1o, NV — % (PN + aVNM)} + %N | N9,0,N" ~ N,ON*
T - 1 . -
—/ a1 N[ 0N =5 V(8ZN”+8”NZ)}, (3.11)
B



where we have been careful to keep surface terms. Plugging in (3.8),
Sy = / d"X 0,0, [o"II0II — 0, 110" 9" 11]
%

- / d" 'z 9,11 [0, 10T — 9,119,0"TI]
B

_ / X 9, é(aynﬁmn _a, B(@,,H)Qayaun}
% L J

- / d" 'z 9,11 [0, 1011 — 9,119,0"TI]

z

= / d"X 0, }(GVH)QDH
y 2

i 1
— / d" 'z 0,T1(9, 16T — 0;T10,0,11) + 5(ayn)%yazn
B.
1
— / d"X 0, [(&,H)QDH}
v 2
n—1 1 3,1 2 2

— A"z 0y 6(8211) + 5(8¢H) 0.11| + 20,110,110;11. (3.12)
Note, the volume integral gives precisely the m-Lagrangian once the y integral is done. The
surface term gives the correct boundary term (2.6) after integrating y, plus an unwanted

piece 20,110,119211, which is not even a total y derivative. It is this piece that will be
cancelled off by the contributions from the Gibbons-Hawking-York and corner terms.

Boundary piece, Sp,. We now start with the terms localized on B,
Sp, = 2/ d" o=y [g’“’eﬁerBzA +nPVg(ntzy) - nAzAK] . (3.13)
B.

Using the expressions (3.9), we calculate,

\/—fyg“”eﬁerBzA = Nf@zﬁf — NNZ&-NZ-, (3.14)
TPV p(nhe) = 0, | N3 - NLN2| - NHOL(NN.) — LN20,(N.), (315
Y Vp(n“za) = ylgte z u( 2) o'Vz y( 2)s (3.15)
\/—’ynAzAK = —NNZauN”. (3.16)

Combining these expressions we have,
n—1 Y TN Lo w2 lus
S, =2 d" 'z | =N;0;(NN;) + 0y §NZ — N,N“—=N7|]|. (3.17)
B.

The first term becomes,

-2 / d" 'z 9,119; (9,110,11) (3.18)

which after integrating 0; by parts cancels the unwanted term in (3.12). The remaining
terms in (3.17) will be canceled by the corner term.



Corner piece, Scorner- Lastly, the corner term must be included,
Sp,nB. = —2/ d" 2z\/—o arccos(nAzA).
B,NB.

Expanding to third order,

1
—0 arccos(nAzA) = —nfzy — g(nAzA)3
1~ ~ o~ 1~
= 751\73 + N, N% + ENE, (3.19)

where we have dropped a constant term.
Finally, adding all three terms together and performing the y integration, the full
action at third order becomes,

g—_1 / " (9,m) 20 + / 2 o+ Lomes (320
2 /s, B,MB- 6 2
reproducing the familiar 7m-Lagrangian with the appropriate boundary terms (2.6).
It should be clear at this point why the boundary B, cannot be set orthogonal to B,
in general. Making them orthogonal would be setting N, = 0, freezing to zero the degree
of freedom in the normal derivatives of w, the very part we are after.

4 An application to 7m-junction conditions

In this section we make use of the new boundary terms and the variational principle to
find junction conditions for m across a sheet-like source, the analog of the Israel junction
conditions of GR. Consider the 7 field in d-dimensions with coordinates z# = (2%, z).
Suppose there is a (d — 1)-dimensional sheet of matter at z = 0, so that the stress tensor
is localized to a delta function T'(z%, 2) = T(2*)8(2). The action includes terms on the left
and right sides of the sheet, boundary terms on both sides of the sheet, and the coupling
to T'(x%) localized to the sheet (setting A = 1),

1
S =— {/ dd:c+/ dda:} (0,m)*0Or
2 left right
1 1 A
+ {7{ di e — 7{ dd_lx} [(@77)34—(81702@#} —I—}{ d e T (Y. (4.1)
z2=0— =071+ 6 2
Varying the action, looking back at (2.2), and keeping terms proportional to dr, we find
68 = { / d%z + / d%} [(3m)% = (0,0,7)?] om
left right
-2 {7{ di e — f dd_lm} O} 0, o + jgdd_lx T(z%)or. (4.2)
z=0— z=01

Note that the variations of the boundary term not involving 9,67 have contributed.



In order for the action to be stationary, its variation must vanish for all §7, including
those right on the sheet. This implies (restoring A),

N2 TA [0, 7] = —T(z"), (4.3)

where A[...]=[...],_g+ —[...],_o- is the change in a quantity across the sheet. We have
assumed that 7 is continuous across the sheet. Thus the tangential derivatives 0;m are also
continuous, and the discontinuity lies only in the normal derivatives.

The boundary terms make it simple to calculate the junction conditions, but the result
can be checked directly from the equations of motion. First note that the equations of
motion can be written as a double total derivative,

(Om)? — ((%(%77)2 = 019" [8“7'('8”71’ — nw,(aﬂ)2] = —T(2")d(2). (4.4)

Now integrate both sides in z across a small interval —e < z < e. Do this at an arbitrary
point z’.

A [0 (9,70,7) — 0. (aw)ﬂ + / " dz 89" [Omdym — (0m)] = ~T(a),  (4.5)
A [af (0,70m) — B, (aﬂr)ﬂ + A [0 (Biwd.m)]

€

+/ dz 0"’ [&'Waﬂr — mj((%)Q] = —T(a;’). (4.6)
—€

Within the remaining z integral, there are first derivatives in z, but no higher derivatives

in z. m is assumed continuous across the sheet, therefore its first z derivative may be

discontinuous but contains no delta function factors. Only second and higher derivatives

in z may contain delta function factors. Therefore the integral vanishes, and we are left with

A [ai (9,70ym) — B, (am)Q] + A [0 (9,70ym)] = 2027 A [0.7) = —T(a), (4.7)

reproducing (4.3).

5 Boundary terms and junction conditions for the general galileon

The DGP 7-lagrangian has two important properties; its field equations are second or-
der, and it is invariant up to a total derivative under the internal galilean transformations
m — w4 ¢+ byxt, where ¢, b, are arbitrary real constants. In [7], all possible lagrangians
of a single scalar with these properties are classified in all dimensions. These lagrangians
are called galileons, and are interesting because they provide relatively well-behaved mod-
ifications of gravity. Like the DGP w-lagrangian, the galileon lagrangians contain higher
derivatives, yet their field equations are second order, so we expect boundary terms will be
needed. In this section, we calculate the boundary terms for all the galileon lagrangians,
and the associated junction conditions.

As shown in [7], there is one galileon lagrangian at each order in 7. Here, order refers
to the number of 7’ s that appear in the equations of motion, i.e. the DGP 7 lagrangian

~10 -



will be the second order galileon. The n-th order galileon is

£n — ,,7,111V1M2V2--.Mnun (6#171—81/1 W(?“Qayﬂr - a,unal/nﬂ-

+0,, 00, M0y 0y, -+ - O, O,

+04y Oy MOy Oy T -+ + Oy, W0y, M) (5.1)
where
VLY v — - Z (—1)? nu1p(1/1),,7u2p(1/2) .. .n#np(”n), (5.2)
Top

The sum in (5.2) is over all permutations of the v indices and (—1)P is the sign of the
permutation. The tensor (5.2) is anti-symmetric in the p’s, anti-symmetric the v’s, and
symmetric under interchange of any p,v pair with another. Using the symmetry of (5.2)
under interchange of p, v pairs, the lagrangian (5.1) can also be written

Ly, = npftierzsbintn (9, 10, 70, 0y, - - - Oy, Oy, T) (5.3)

These lagrangians are unique up to total derivatives and overall constants. In n-dimensions,
only the first n galileons are non-trivial, i.e. not total derivatives.
At first order, we have

Ly = (0n)?, (5.4)

which is the standard kinetic term for a scalar. At second order, we have the DGP =-
lagrangian
Ly = (87)* Or — 8,0, w0 nd" =, (5.5)

here in a form which differs from (2.1) by a total derivative (and an overall constant). Of
course changing the lagrangian by a total derivative will change the necessary boundary
term, since a total derivative is a boundary contribution. We will find the boundary term
for the lagrangian (5.1), and a lagrangian that differs by a total derivative (such as (2.1))
will need to have its boundary term modified accordingly.

Unlike the n = 2 case, for n > 2 there is no known higher dimensional gravitational
setup such as DGP that yields the galileon in a decoupling limit. As such, we will only be
able to derive the boundary terms from consistency of the variational principle, not from
a higher dimensional well-posed action as we did from DGP in the n = 2 case.

The equations of motion derived from (5.1) are

=5-=

En —n(n + L)ptrrkerztintn (9 0y, T0uyOpp T + - Oy Oy, ) (5.6)

and are second order, as advertised.

Boundary terms. Varying the action (5.3), we find the following boundary contribution,
remembering that 7 and all its tangential derivatives vanish on the boundary, and using
the symmetry of (5.2) under interchange of u, v pairs,

0Ln|g, = n(n — 1)n™H2r2Hnn g 51 (0)uy WOy MOy Oy T - + + Oy, O, T0) - (5.7)

- 11 -



Now, by the anti-symmetry of (5.2) in the u’s and v’s, all the remaining p, v indices in (5.7)
must lie tangent to the boundary, so we have

0Ln|g, = n(n — 1)p?#i2d2ining 5 (04,05, 03, Ojym -+ - 05,05, T) (5.8)
where ¢, j indices are along the boundary. Using the property
i ingn %nigjg--dnjn’ (5.9)

we have

0Ln|g, = 0.0m(n — D)t in—tin=1 (9, w0, w0;, 05,1 -+ Oy, 105, 0) = 0507 Ln-1lg, ;
(5.10)
where L,_1|z_ is the (n — 1)-th order galileon action using only boundary derivatives.
The boundary term needed to cancel this variation is, up to a total tangential derivative
and terms involving no normal derivatives,

Interestingly, the boundary term for the n-th order galileon is simply the (n — 1)-th order
galileon, times a normal derivative of m. Recall that in the case n = 2 this boundary term
differs from (2.6) simply because the lagrangian Lo differed by a total derivative.

Junction conditions. We will derive the junction conditions for the general galileon
both from the variational principle and directly from the equations of motion. The setup
and method are identical to the DGP case described in section 4. The galileon action in
the presence of the junction is

S = {/ ddx—i—/ ddx} L,
left right

AL e e s e o

We will show the variation of the action in detail, so for convenience in what follows,
we define the following shorthand quantities:

A = pidiin-iin-19 g (32.13].17( . ainilajnilﬂ) o, (5.13)
B = niljl“‘infljnfl (8i17r 8]-18277 81'28]'27'&" . ‘8in_18jn_177) 571', (5.14)
C = niljl"'in_lj"_l (8]‘171' 82'18271' 81'28]‘271'- . -8%718]-”7177) (571', (5.15)
D = T]iljl“‘infljnfl (ailﬂ‘ajlﬂ' aiQGanzﬂ' ai38j371' o 'ain_lajn_lﬂ') or. (5.16)

We start by varying the boundary part (£,)z_, as given in (5.11),
(En)Bz =—(n-— l)niljl“‘i”*j”*@zﬂ (&lwﬁjlw 0y 0, - - - ain_1ajn_17r) . (5.17)

The variation 9,07 will be ignored because the boundary term was designed to have it cancel
with the bulk. The variation of the 7’s with a singe derivative gives, upon integration by
parts,

2n—1D)A+ (n—-1)(B+C). (5.18)
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The variation of the double derivative 7’s, upon integrating by parts once to remove the ¢
derivative from o, gives,

(n - 1)(” - 2)772‘11'1-..%71]'”71 (8,'26371' 8Z'17"—8]'17'r aj257r 8Z'ziajsﬁ T 8in—lajn—l
+ 0.7 8¢17r 8i2(9j17r 6j2(5ﬂ' 81'38]'371" . '81'”71(9]'”71’% ) . (5.19)

s

Now another integration by parts to remove the j derivative from d7 gives, line for line,
—(n—-1)(n-2)D+(n—-1)(n—-2)B
+(n—1)(n—2)A+ (n—1)(n—2)C. (5.20)
adding together (5.18) and (5.20) gives the total variation of the boundary term
§(Ln)g, =n(n—1)A+ (n—1)*(B+C) - (n—1)(n—2)D. (5.21)
Now, start on the variation of the bulk term, as given in (5.3),
Ly, = nnft b (9, w0, T 01y Oy - -+ Oy, Oy ) - (5.22)
We break the variation into three pieces:

e First consider the part of the variation on the boundary coming from varying the
first derivative 7’s and pulling off the derivative. Call this A,

A = npt (6 0y, T 04y Oy -+ - Oy, Oy T0)
FppfEe e (5 Oy Dy Oy -+ 3unaynﬂ-) . (5.23)

Now, of the remaining p, v indices, only one other at a time can take the value z, due
to the antisymmetry of npH1¥i--Hn¥n

A = n® 232indn (51 9,1 93,05, -+ - O;, 05, T0)
+n(n — l)nzjl 22 winjn (57T 8j17l' 82'2827T 81'38j37T <o 6¢n8jn7r)
nF 292 indn (5 9,1 03,0y - - - 0, 0, )
+n(n — l)nilz 22 injn ((57T 8Z~17r azanW ({91'3(9]‘37T cee ainajnﬂ') . (5.24)
Using the property (5.9) and renaming indices,
A=A-n-1)C+A—-(n—-1)B, (5.25)
=24A—(n—1)(B+0C). (5.26)

e Next consider the part of the variation on the boundary coming from varying the
double derivative n’s and pulling off the u derivative. Call this B,

B = n(n — 1)pk¥t =2 Ksvs-tntn (9 10, T Opy0m 03Oy -+ Oy, Oy, ) . (5.27)

We can set v5 = jo, because as mentioned before the variation 0,07 cancels with the
boundary term,

B = n(n — 1)pH1¥1 202 #svstintn (9 w0, m 0jy 0T Oy OpsT -+ + Oyt O ) - (5.28)
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Of the remaining p, v indices, only one other at a time can take the value z,

B = n(n — 1)nt* 22 Bis-inin (9, 1 0,1 0;,07 DjyOjym - - - 0y, 05, T)
+n(n—1)(n—2)ptjt @2 8% Wis-inin (5, 70 T 0j,0m 0330, 0;,05,7 - - 0y, 0;, ) -
(5.29)
Using the property (5.9) and renaming indices,

B = —(n — l)?]iljl"'i”_ljn_1 (8,‘17T 8Z7r 8j157r 8@28]‘2% . ~8Z-n718jn717r)
—(n—1)(n— Z)niljl"'infljnfl (03, 05, ™ 0j,0m 03,0, 03,04, -+ - 05,05, 7)

(5.30)
and integrating by parts to pull the j derivative off of dm,
B=(n—-1A+(n-1)B
—(n—1)(n—-2)C+(n—1)(n—2)D. (5.31)

e Finally, after pulling off the u derivative from the double derivatives in the bulk term,
there remains the bulk term

—n(n — 1)t (9, 1 0,00, T Opy0m 030y -+ - Oy, O, ) (5.32)

which gives a boundary part which we label C,

C = —n(n — 1)pHrrt K2z BsVs-bntn (9 1 0,4y Opy T O Oyyy Oy - - - Opyy, Oy ) (5.33)
= —n(n—1)p¥t 2% BIs—inin (9.7 0;,0;, 7 67 ;04,7 -+ - 0i, D, 0)
—n(n—1)(n—2)n"1Jt 2% 238 js-inin (9, 1 0,05, 7 0T 0,04, 0, 05,7 -+ - s, Dj, )
—n(n—1)y"dt 22 1333 inin (9, 70,0; m 61 DiyOjy -+ - 04, 0j,T0) - (5.34)
C=mn-1)A—-(n-1)(n—2)B—(n—1)B

= (n—1)A— (n—1)2B. (5.35)

In total, the bulk variation gives

0Lnlg =A+B+C
=2nA—(n—1)*B+0C)+ (n—1)(n—2)D. (5.36)

Adding together the bulk and boundary variations (5.21) and (5.36) on both sides
of the boundary and demanding the action be stationary at the boundary leads to the
discontinuity

— Aln(n+1)A] + T(z") = 0. (5.37)

Using the assumption that 7 and its tangential derivatives are continuous across the junc-

tion, we have finally
n+1

n—1

A (0.7) En—ilg, = —T(z"), (5.38)
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where &, 1| means the (n—1)-th order galileon equation of motion as given in (5.6), using
only boundary derivatives. Interestingly, the n-th order junction condition is proportional
to the (n — 1)-th order equation of motion. In the case n = 2 this agrees with (4.3) after
appropriate normalizations.

We now re-derive this same result directly from the equations of motion, &, = —T'(z),

— n(n 4 V)pprvserzbntin (9 9, 10,0y, T - -+ O Oy ) = —T(x°)5(2). (5.39)

Integrate both sides in z across a small interval —e < z < ¢, at an arbitrary point z?,

—n(n+ 1)/ dz mpvisevebintn (9 9, 10, Oy -+ - Oy Oy ) = —T(z"). (5.40)

—€
In the sums over p’s and p’s we are only interested in those parts that contain double z
derivatives. This is because 7 is assumed continuous, so only the double derivatives can
bring in delta function factors that contribute under the z-integral. In addition, there can
only be one double z derivative at a time in a term, because of the anti-symmetry properties
of p#1¥1* and there are n such terms, all identical, due to the symmetry properties n#*1,

€

—n%(n+ 1)/ dz n02inn (92700, 0, - - - 0;,0;,m) = —T'(2"). (5.41)
—€

Now, integrate one of the z derivatives by parts. The resulting integral vanishes, because

it contains no double z derivatives, and what remains is the endpoints, which gives the

discontinuity,
—n?(n+ 1)A [p?#202 i (9,70,,0j,7 - - - 0;,0;,m)] = —T(a"), (5.42)
—n(n+ 1A (9,7) it in-1in-1 (03,05, 7+ 0;,_,0;,_,7) = —T(zY), (5.43)
1 .
s A0 il = ~TG),  (544)

reproducing (5.38).

6 Conclusions and speculations

We have shown that the DGP w-Lagrangian must be supplemented by a Gibbons-Hawking-
York type boundary term and have calculated this term directly from the bulk. In GR,
the Gibbons-Hawking-York term plays a prominent role in the calculation of black hole
entropy in the semi-classical approximation, among other things. The partition function
is calculated from the Euclidean action evaluated on a black hole configuration, and it is
found that the entire contribution comes solely from the Gibbons-Hawking-York term on
the boundary at infinity [13].

It might be that the boundary term we have found could be used to compute corrections
to the entropy of a DGP black hole in the decoupling limit. No exact DGP black hole
solution is known, but if only the asymptotic behavior of 7 in the appropriate Euclidean
solution is known, the boundary term could perhaps be evaluated. However, because of
no-hair theorems stating that a scalar such as m must be trivial outside a black hole, it
may very well be the case that there are no interesting corrections coming from 7. We
leave these issues for the future.
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